

DATA SHEET

SKY65135-21: WLAN Linear Power Amplifier

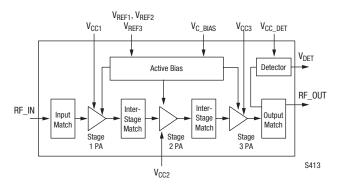
Applications

- IEEE802.11 b/g WLAN
- WiMAX
- ISM band
- WCS fixed wireless
- · Wireless access nodes

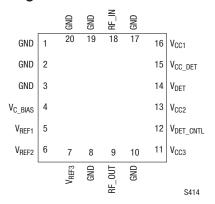
Features

- Frequency of operation 2.4-2.5 GHz
- Linear power out of 31 dBm for 802.11b mask
- Linear power out of 30 dBm for 802.11g mask
- High small signal gain of 33.5 dB
- Output power detector: 20 dB dynamic range
- Excellent gain flatness
- Internal RF match with DC block
- · Active bias circuit
- MCM (20-pin, 6 x 6 mm) lead (Pb)-free package (MSL3, 260 °C per JEDEC J-STD-020)

Description


The SKY65135-21 is a fully matched, DC blocked, 20-pin, lead-free, surface mount, Multi-Chip Module (MCM) Power Amplifier (PA) with excellent output power, linearity, and efficiency. The part is primarily designed mainly for WLAN/ISM/WCS applications and wireless access nodes in the 2400–2500 MHz band, but may be used in a variety of power amplifier applications.

All active circuitry in the module is contained in a single Gallium Arsenide (GaAs) Microwave Monolithic Integrated Circuit (MMIC).


The device is manufactured with Skyworks Aluminum (Al) GaAs Heterojunction Bipolar Transistor (HBT) process, which allows for single supply operation while maintaining high efficiency and good linearity.

The module can operate over the temperature range of -40 °C to 85 °C. A populated evaluation board is available upon request.

Block Diagram

Package Diagram

Skyworks offers lead (Pb)-free, RoHS (Restriction of Hazardous Substances)-compliant packaging.

Electrical Specifications

 $\textbf{V}_{\text{CC1}} = \textbf{V}_{\text{CC2}} = \textbf{3.3 V}, \textbf{V}_{\text{CC3}} = \textbf{5 V}, \textbf{V}_{\text{REF1}}, \textbf{V}_{\text{REF2}}, \textbf{V}_{\text{REF3}} = \textbf{5 V}, \textbf{V}_{\text{C}_\text{BIAS}} = \textbf{5 V}, \textbf{V}_{\text{CC}_\text{DET}} = \textbf{5 V}, \textbf{Z}_{0} = \textbf{50} \ \Omega, \textbf{V}_{\text{C}} = \textbf{50} \ \Omega$ Test Frequency = 2.442 GHz, $T_C = 25$ °C, unless otherwise specified⁽⁵⁾

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Continuous wave						
Small signal gain	G	$P_{IN} = -25 \text{ dBm}$	32	33.5	34.5	dB
Gain flatness over band		2.4 GHz to 2.5 GHz		±0.25		dB
Gain flatness over channel		Over any 16.25 MHz within band		±0.1		dB
Input return loss	IS ₁₁ I	$P_{IN} = -25 \text{ dBm}$	10	18		dB
Output return loss	IS ₂₂ I	$P_{IN} = -25 \text{ dBm}$		17		dB
Output power @ P _{1 dB}	P _{1 dB}	$P_{IN} = 0 \text{ dBm}$	32	33.5		dBm
Output 3rd order intercept	OIP3	P_{OUT} /tone = 25 dBm, ΔF = 5 MHz		44		dBm
Noise figure	NF	$P_{IN} = -25 \text{ dBm}$		5	6.5	dB
Power-added efficiency	PAE	P _{OUT} @ P _{1 dB}	25	36		%
Detector voltage	V _{DET}	P _{OUT} @ P _{1 dB}		1.75		V
Quiescent current	Iccq	No RF signal		405	450	mA
Thermal resistance	Θ _{JC}	Junction to case		19		°C/W
IEEE802.11b, CCK modulation, 11 Mbps						
Total supply current	ICC_TOTAL			1150		mA
Output power ⁽¹⁾	P _{OUT}			31		dBm
Power-added efficiency ⁽²⁾	P _{OUT_EVM}			25		%
Ramp-up/ramp-down ⁽³⁾	T _S			<0.5		μs
IEEE802.11g, OFDM modulation, 54 Mbps			,			
Total supply current	I _{CC_TOTAL}			1050		mA
Output power ⁽⁴⁾	P _{OUT}			30		dBm
Output power at EVM = 3%	P _{OUT_EVM}			25		dBm
Power-added efficiency ⁽²⁾	PAE			22		%

^{1.} Defined as the maximum power level for which the IEEE802.11b transmit mask

requirements are met.

2. Measured at the specified average output RF power and modulation type.

^{3.} Ramp-up and ramp-down times are defined from the 10% to 90% power points.

^{4.} Defined as the maximum power level for which the IEEE802.11g transmit mask requirements are met.
5. Voltage measured at evaluation board pins.

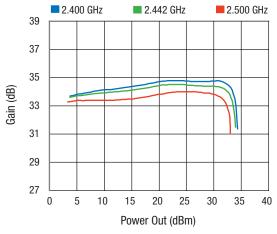
Absolute Maximum Ratings

Characteristic	Value		
RF output power (P _{OUT})	30 dBm		
Supply voltages (V_{CC1} , V_{CC2} , V_{REF1} , V_{REF2} , V_{REF3} , V_{CC_DET}) ⁽¹⁾	4 V		
3rd Stage supply voltage (V _{CC3} , V _{C_BIAS})	6 V		
Total supply current ($I_{CC} + I_{BIAS} + I_{REF}$)	1200 mA		
Power dissipation (P _{DISS})	4.0 W		
Operating case temperature (T _C)	-40 °C to +85 °C		
Storage temperature (T _{ST})	-55 °C to +125 °C		
Junction temperature (T _J)	150 °C		

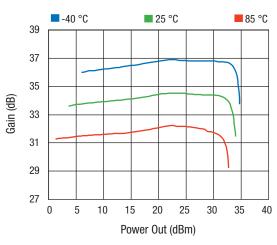
Voltage levels measured at the pins of the package. The evaluation board supply voltage levels may be different. Refer to the evaluation board schematic diagram.

Performance is guaranteed only under the conditions listed in the specifications table and is not guaranteed under the full range(s) described by the Absolute Maximum specifications. Exceeding any of the absolute maximum/minimum specifications may result in permanent damage to the device and will void the warranty. Each absolute maximum rating listed is an individual parameter. Operating the amplifier with more than one condition at its absolute maximum or minimum rating value may result in permanent damage to the device. Exposure to maximum rating conditions for extended periods may reduce device reliability.

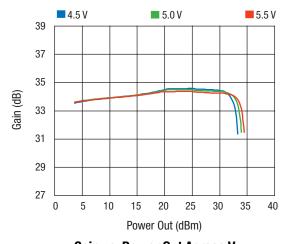
CAUTION: Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions must be employed at all times.

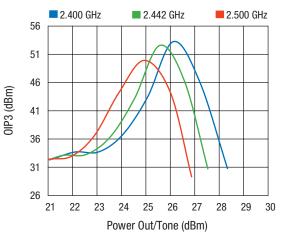

Recommended Operating Conditions

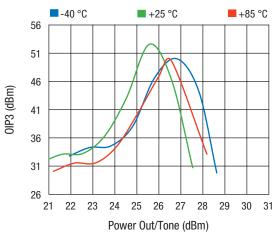
Parameter	Symbol	Frequency	Min.	Тур.	Max.	Unit
Operating frequency	F ₀		2.4		2.5	GHz
RF input power	P _{IN}				-4	dBm
Supply voltages ⁽¹⁾	V _{CC1} , V _{CC2}		3.0	3.3	3.6	٧
	V _{CC3} , V _{C_BIAS}		4.5	5	5.5	V
	V _{REF1} , V _{REF2} , V _{REF3}		2.3	2.5	2.7	V
	V _{CC_DET}		3.3	3.6	3.9	V
Supply currents ⁽²⁾	I _{CC1}			62		mA
	I _{CC2}			369		mA
	I _{CC3}			725		mA
	I _{C_BIAS}			10		mA
	I _{REF1}			5		mA
	I _{REF2}			14		mA
	I _{REF3}			11		mA
	I _{CC_DET}			7		mA
Operating temperature	T _C		-40	+25	+85	°C

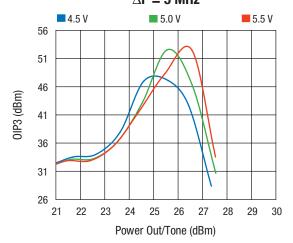

Voltage levels measured at the pins of the package. The evaluation board supply voltage levels may be different. Refer to the evaluation board schematic diagram.

^{2.} Typical supply currents at recommended maximum input power, using standard device bias components, $T_C = 25 \, ^{\circ}\text{C}$,

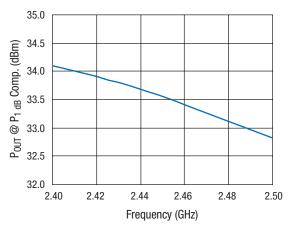

 $V_{CC1} = V_{CC2} = 3.3 \text{ V, } V_{CC3} = 5 \text{ V, } V_{REF1}, V_{REF2}, V_{REF3} = 5 \text{ V, } V_{C_BIAS} = 5 \text{ V, } V_{CC_DET} = 5 \text{ V, } Z_0 = 50 \ \Omega,$ Frequency = 2.442 GHz, CW, P_{IN} = -25 dBm, T_C = 25 °C, unless otherwise specified


Gain vs. Power Out Across Frequency

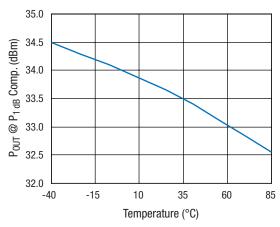

Gain vs. Power Out Across Temperature


Gain vs. Power Out Across V_{CC3}

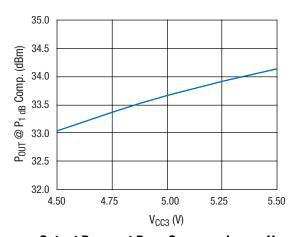
OIP3 vs. Power Out/Tone Across Frequency $\Delta F = 5 \text{ MHz}$

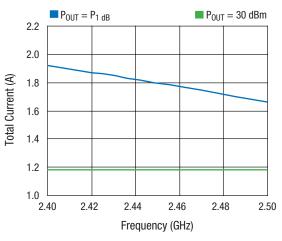


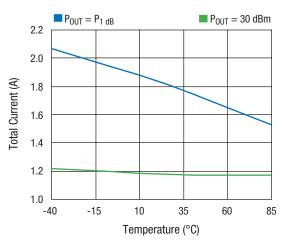
OIP3 vs. Power Out/Tone Across Temperature $\Delta F = 5 \text{ MHz}$

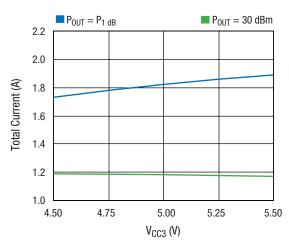


0IP3 vs. Power Out/Tone Across V_{CC3} $\Delta F = 5 \text{ MHz}$

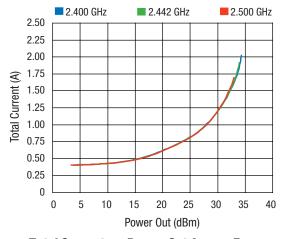

 $V_{CC1} = V_{CC2} = 3.3$ V, $V_{CC3} = 5$ V, V_{REF1} , V_{REF2} , $V_{REF3} = 5$ V, $V_{C_BIAS} = 5$ V, $V_{CC_DET} = 5$ V, $Z_0 = 50$ Ω , Frequency = 2.442 GHz, CW, $P_{IN} = -25$ dBm, $T_C = 25$ °C, unless otherwise specified

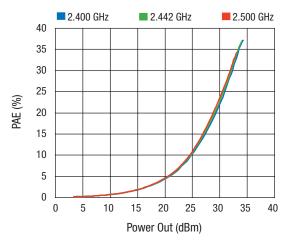

Output Power at P_{1 dB} Compression vs. Frequency


Output Power at P_{1 dB} Compression vs. Temperature

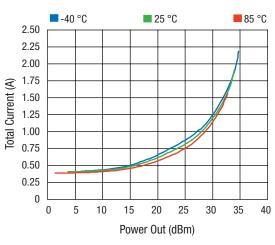

Output Power at P_{1 dB} Compression vs. V_{CC3}

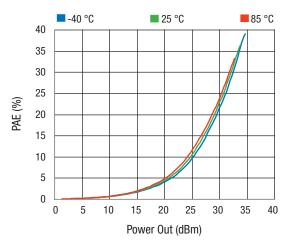
Total Current vs. Frequency Across Power Out



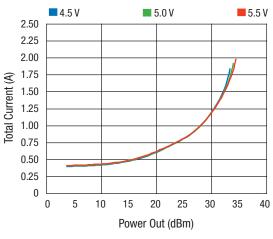

Total Current vs. Temperature Across Power Out

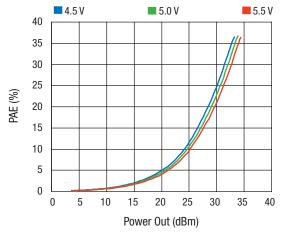
Total Current vs. V_{CC3} Across Power Out


 $V_{CC1} = V_{CC2} = 3.3$ V, $V_{CC3} = 5$ V, V_{REF1} , V_{REF2} , $V_{REF3} = 5$ V, $V_{C_BIAS} = 5$ V, $V_{CC_DET} = 5$ V, $Z_0 = 50$ Ω , Frequency = 2.442 GHz, CW, $P_{IN} = -25$ dBm, $T_C = 25$ °C, unless otherwise specified



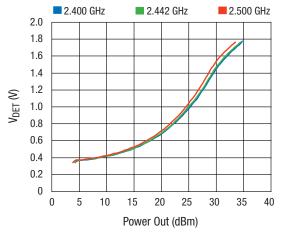
Total Current vs. Power Out Across Frequency

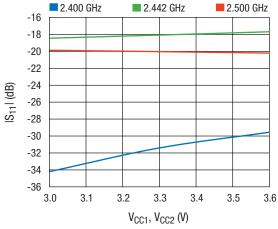

PAE vs. Power Out Across Frequency



Total Current vs. Power Out Across Temperature

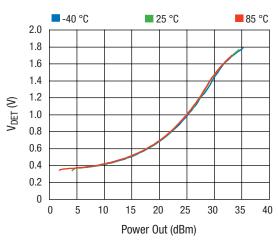
PAE vs. Power Out Across Temperature

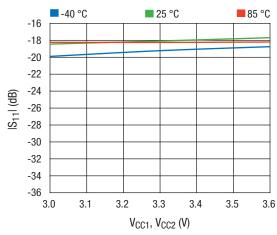




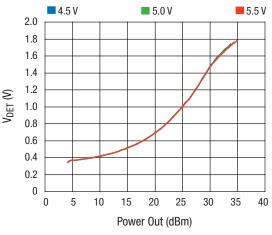
Total Current vs. Power Out Across V_{CC3}

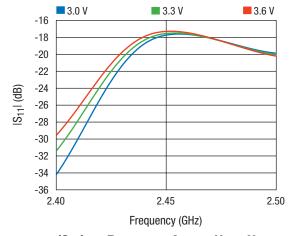
PAE vs. Power Out Across V_{CC3}


 $V_{CC1} = V_{CC2} = 3.3$ V, $V_{CC3} = 5$ V, V_{REF1} , V_{REF2} , $V_{REF3} = 5$ V, $V_{C_BIAS} = 5$ V, $V_{CC_DET} = 5$ V, $Z_0 = 50$ Ω , Frequency = 2.442 GHz, CW, $P_{IN} = -25$ dBm, $T_C = 25$ °C, unless otherwise specified



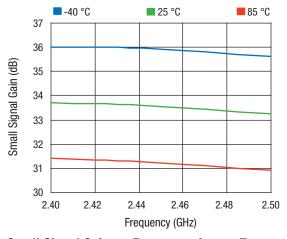
Detector Voltage vs. Power Out Across Frequency

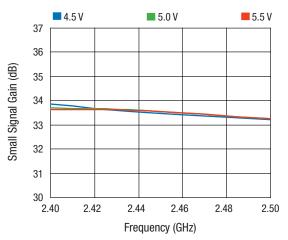

IS₁₁I vs. V_{CC1}, V_{CC2} Across Frequency



Detector Voltage vs. Power Out Across Temperature

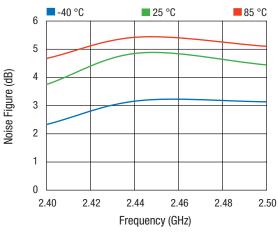
IS₁₁I vs. V_{CC1}, V_{CC2} Across Temperature

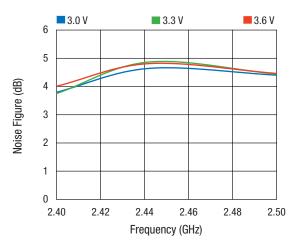




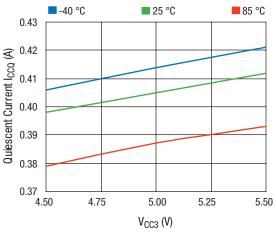
Detector Voltage vs. Power Out Across V_{CC3}

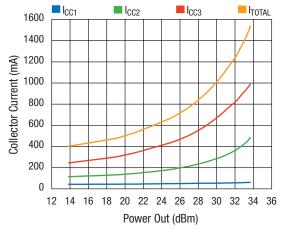
IS₁₁I vs. Frequency Across V_{CC1}, V_{CC2}


 $V_{CC1} = V_{CC2} = 3.3$ V, $V_{CC3} = 5$ V, V_{REF1} , V_{REF2} , $V_{REF3} = 5$ V, $V_{C_BIAS} = 5$ V, $V_{CC_DET} = 5$ V, $Z_0 = 50$ Ω , Frequency = 2.442 GHz, CW, $P_{IN} = -25$ dBm, $T_C = 25$ °C, unless otherwise specified



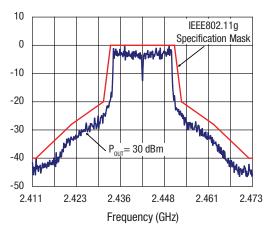
Small Signal Gain vs. Frequency Across Temperature

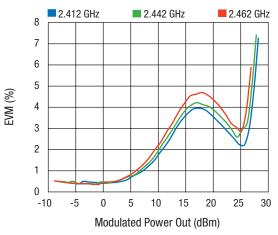

Small Signal Gain vs. Power Out Across V_{CC3}



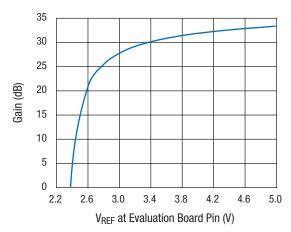
Noise Figure vs. Frequency Across Temperature

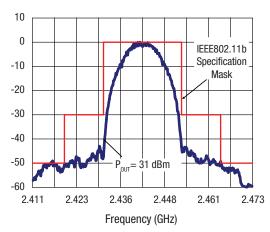
Noise Figure vs. Frequency Across V_{CC1}, V_{CC2}

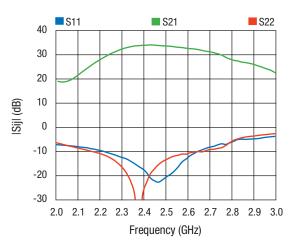


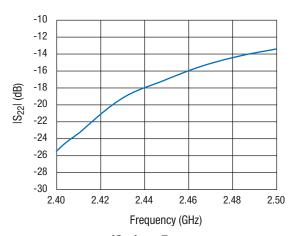

Quiescent Current vs. V_{CC3} Across Temperature

Individual Stage Currents and Total Current vs. RF Output Power


 $V_{CC1} = V_{CC2} = 3.3$ V, $V_{CC3} = 5$ V, V_{REF1} , V_{REF2} , $V_{REF3} = 5$ V, $V_{C_BIAS} = 5$ V, $V_{CC_DET} = 5$ V, $Z_0 = 50$ Ω , Frequency = 2.442 GHz, CW, $P_{IN} = -25$ dBm, $T_C = 25$ °C, unless otherwise specified


Output Spectrum Response for 802.11g Power Out = 30 dBm


EVM vs. Modulated Power Out Across Frequency 802.11g OFDM 54 Mbps Root Cosine Filtering w/0.7 Roll-off Factor


Small Signal Gain vs. V_{REF} (at Evaluation Board Pin)

Output Spectrum Response for 802.11b CCK-Coded, Power Out = 31 dBm

S-Parameters vs. Frequency

IS₂₂I vs. Frequency

Theory of Operation

The SKY65135-21 is comprised of three amplifier stages. Input and output DC blocks plus RF matching circuits for the input stage, second stage, and output stage are contained within the device. An on-chip active bias circuit is included within the device for excellent gain tracking over temperature and voltage variations. There are three individual active bias circuits, one circuit for each of the amplifier stages. Each active bias circuit has its own reference voltage supply (V_{REF}) and they share a common bias voltage (V_{C_BIAS}). The active bias is designed to maintain a constant supply current to the base of each amplifier stage as supply voltage and temperature change.

The SKY65135-21 is internally matched and DC blocked for optimum linearity and efficiency. The input and output stages are independently supplied using the V_{CC1} , V_{CC2} and V_{CC3} supply lines, pins 16, 13 and 11, respectively. The bias reference voltage for stages 1, 2 and 3 is supplied using lines V_{REF1} , V_{REF2} and V_{REF3} (pins 5, 6 and 7). The DC control voltage that sets the bias to stages 1, 2 and 3 is supplied via $V_{C\ BIAS}$, pin 4.

The amplifier includes an on-board, compensated power detector, V_{DET} , pin 14, providing a single-ended output voltage for an output power measurement over a wide dynamic range. For proper detector operation, V_{DET_CTRL} , pin 12, is grounded though a 51 Ω resistor and a 270 pF shunt capacitor with a reference voltage of 3.6 V applied to the V_{CC_DET} line. Any voltage between 3.3 and 3.9 V is acceptable for the reference voltage, but it is recommended to supply V_{CC_DET} from the V_{REF} power supply. The benefit in doing this is to save the 7 mA of current the detector reference circuit would otherwise consume with the PA in the "Off" state.

Application Circuit Notes

Center Ground. It is extremely important that the device paddle be sufficiently grounded for both thermal and stability reasons. Multiple small vias are acceptable and will work well under the device if solder migration is an issue.

Ground (Pins 1, 2, 3, 8, 10, 17, 19, 20). Attach all ground pins to the RF ground plane with the largest diameter and lowest inductance via that the layout will allow. Multiple small vias are also acceptable and will work well under the device if solder migration is an issue.

 V_{C_BIAS} (Pin 4). V_{C_BIAS} is the bias supply voltage for stages 1, 2 and 3. Typically set to 5 V.

 V_{REF1} (Pin 5). Bias reference voltage for amplifier stage 1. V_{REF1} should be operated at 2.5 V at the package pin. The voltage at the evaluation board pin is 5 V.

 V_{REF2} (Pin 6). Bias reference voltage for amplifier stage 2. V_{REF2} should be operated at 2.5 V at the package pin. The voltage at the evaluation board pin is 5 V.

 V_{REF3} (Pin 7). Bias reference voltage for amplifier stage 3. V_{REF3} should be operated at 2.5 V at the package pin. The voltage at the evaluation board pin is 5 V.

RF_OUT (Pin 9). Amplifier RF output pin. $Z_0 = 50~\Omega$. The module includes an onboard internal DC blocking capacitor. All impedance matching is provided internal to the module.

 V_{CC3} (Pin 11). Supply voltage for output (final) stage collector bias (typically 5 V). Bypassing of V_{CC3} is accomplished with C10 and C17 and should be placed in the approximate location shown on the evaluation board, but placement is not critical.

V_{DET_CNTL} (**Pin 12**). Detector voltage control pin is the point in between the detector capacitor coupler which is connected to the collector of the PA. This pin is typically grounded via C9 and R4, but can be tuned to change the V_{DET} output voltage.

 V_{CC2} (Pin 13). Supply voltage for output (final) stage collector bias (typically 5 V). Bypassing of V_{CC2} is accomplished with C8 and C16 and should be placed in the approximate location shown on the evaluation board, but placement is not critical.

V_{DET} (**Pin 14**). Detector output pin. Provides a single-ended output voltage which references the output power over a wide dynamic range.

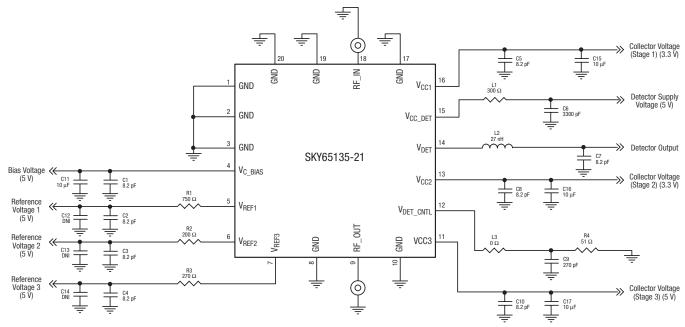
 V_{CC_DET} (Pin 15). Detector supply voltage. For proper detector operation, a reference voltage of 3.6 V should be applied. Any voltage between 3.3 and 3.9 V is acceptable for the reference voltage. Bypassing of V_{CC_DET} is accomplished with L1 (300 Ω resistor) and C6.

 V_{CC1} (Pin 16). Supply voltage for output (final) stage collector bias (typically 5 V). Bypassing of V_{CC1} is accomplished with C5 and C15 and should be placed in the approximate location shown on the evaluation board, but placement is not critical.

RF_IN (**Pin 18**). Amplifier RF Input P_{IN} . $Z_0 = 50~\Omega$. The module includes an onboard internal DC blocking capacitor. All impedance matching is provided internal to the module.

Package and Handling Information

Since the device package is sensitive to moisture absorption, it is baked and vacuum packed before shipping. Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.


Please refer to Skyworks solder reflow application note, available at www.skyworksinc.com, for instructions on mounting the SKY65135-21 to a printed circuit board.

Production quantities of this product are shipped in a standard tape and reel format. For packaging details, refer to the Skyworks Application Note, *Tape and Reel*, document number 101568.

Electrostatic Discharge (ESD) Sensitivity

The SKY65135-21 is a static-sensitive electronic device. Do not operate or store near strong electrostatic fields. Take proper ESD precautions.

Application Circuit

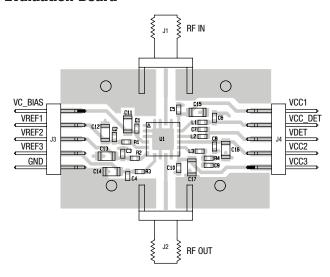
Note: DNI (Do Not Install)

S702

Pin Assignments

Pin	Pin Name	Description		
1	GND	Low Inductance ground connection		
2	GND	Low Inductance ground connection		
3	GND	Low Inductance ground connection		
4	V _{C_BIAS}	Bias voltage		
5	V _{REF1}	Bias reference voltage 1		
6	V _{REF2}	Bias reference voltage 2		
7	V _{REF3}	Bias reference voltage 3		
8	GND	Low Inductance ground connection		
9	RF_OUT	RF Output		
10	GND	Low Inductance ground connection		
11	V _{CC3}	Stage 3 collector voltage		
12	V _{DET_CNTL}	Detector voltage control		
13	V _{CC2}	Stage 2 collector voltage		
14	V _{DET}	Detector output signal		
15	V _{CC_DET}	Detector supply voltage		
16	V _{CC1}	Stage 1 collector voltage		
17	GND	Low Inductance ground connection		
18	RF_IN	RF input		
19	GND	Low Inductance ground connection		
20	GND	Low Inductance ground connection		

Center attachment pad must have a low inductance and low thermal resistance connection to the customer's printed circuit board ground plane.


Evaluation Board Description

The Skyworks SKY65135-21 Evaluation Board is used to test the performance of the SKY65135-21 power amplifier module. The following design considerations are general in nature and must be followed regardless of final use or configuration.

- 1. Paths to ground should be made as short as possible.
- 2. The ground pad of the SKY65135-21 power amplifier module has special electrical and thermal grounding requirements. This pad is the main thermal conduit for heat dissipation. Since the circuit board acts as the heat sink, it must shunt as much heat as possible from the amplifiers. As such, design the connection to the ground pad to dissipate the maximum wattage produced to the circuit. Multiple vias to the grounding layer are required.

NOTE: Junction temperature (T_J) of the device increases with a poor connection to the slug and ground. This reduces the lifetime of the device.

Evaluation Board

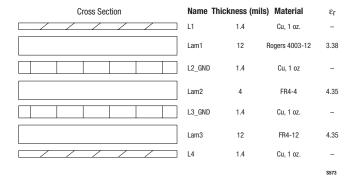
Evaluation Board Test Procedure

- Step 1. Connect RF test equipment to Amplifier input/output SMA connectors.
- Step 2. Connect DC ground.
- Step 3. Connect all V_{REG} , V_{CC3} , and V_{C_BIAS} lines to a 5 V supply. Connect all V_{CC1} , and V_{CC2} lines to a 3.3 V supply. Verify the total I_{CO} current is approximately 405 mA.
- Step 4. To observe the detector voltage output, connect a 5 V supply to the V_{CC_DET} pin to and connect a voltmeter or oscilloscope to the V_{DFT} pin on the evaluation test board.
- Step 5. Apply an RF input signal of -25 dBm and observe the output signal level is approximately 8.5 dBm or the gain of the device is approximately 33.5 dB.

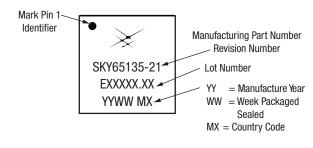
NOTE: It is important that the V_{CC3} voltage source be adjusted such that 5 V is measured at the board. The high collector currents will drop the collector voltage significantly if long leads are used. Adjust the bias voltage to compensate.

Recommended Solder Reflow Profiles

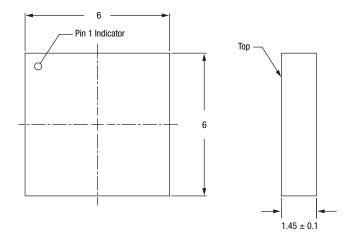
Refer to the "<u>Recommended Solder Reflow Profile</u>" Application Note.

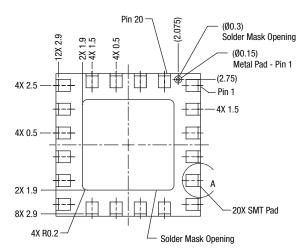

Tape and Reel Information

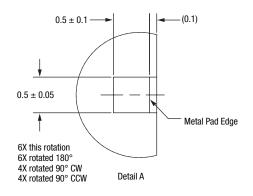
Refer to the "<u>Discrete Devices and IC Switch/Attenuators</u> Tape and Reel Package Orientation" Application Note.


Bill of Material for Evaluation Board

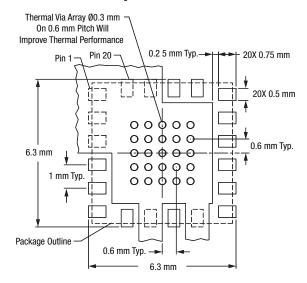
Part	ID	Qty.	Size	Value	Units	Product Number	Manufacturer	Manufacturer's Part Number	Characteristics
1	C1, C2, C3, C4, C5, C7, C8, C10	8	0603	8.2	pF	5404R23-046	Murata	GRM1885C1H6R8CZ01D	COG, 50 V, ± 0.25 pF
2	C6	1	0603	3300	pF	5404R28-015	Murata	GRM188R71H332KD01J	X7R, 50 V, ± 10%
3	C9	1	0603	270	pF	5404R23-030	Murata	GRM1885C1H271JD51D	COG, 50 V, ± 5%
4	C11, C15, C16, C17	4	1206	10	μF	5404R91-005	TDK	C3216X5R0J106KT	X5R, 6 V, ± 10%
5	R1	1	0603	750	Ω	5424R20-046	Rohm	MCR03EZHUJ750	50 V, 0.063 W, ± 5%
6	R2	1	0603	200	Ω	5424R20-032	Rohm	MCR03EZHUF200	50 V, 0.063 W, ± 1%
7	R3	1	0603	270	Ω	5424R20-035	Rohm	MCR03EZHUF270	50 V, 0.063 W, ± 1%
8	R4	1	0603	51	Ω	5424R20-018	Rohm	MCR03EZHUF051	50 V, 0.063 W, ± 1%
9	L1	1	0603	300	Ω	5424R20-036	Rohm	MCR03EZHUF300	50 V, 0.063 W, ± 1%
10	L2	1	0603	27	nH	5332R34-030	Taiyo-Yuden	HK160827NJ-T	±5%, SRF 1400 MHz
11	L3	1	0603	0	Ω	5424R20-146	Rohm	MCR03EZHJ000	50 V 0.063 W, ± 5%


Evaluation Board Stack-Up

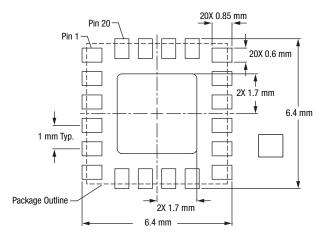


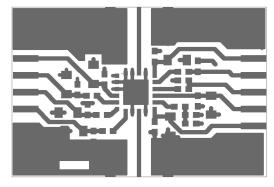

Branding Specifications

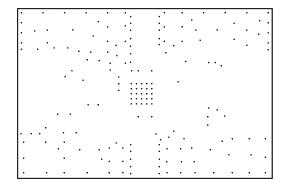
Package Dimensions

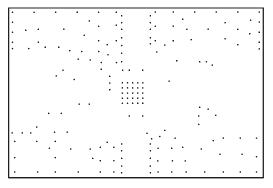


Dimensioning and tolerancing in accordance with ASME Y14.5M-1994. All dimensions are in millimeters


Recommended Footprint

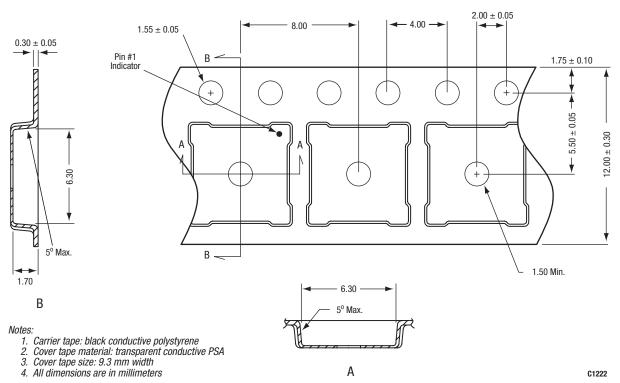

Stencil Pattern


Solder Mask


Evaluation Board Detail

Layer 1: Top Metal

Layer 3: Ground


Layer 2: Ground

Layer 4: Ground

S590

Tape and Reel Dimensions

Ordering Information

Model Name	Manufacturing Part Number	Evaluation Kit Part Number		
SKY65135-21: WLAN Linear Power Amplifier	SKY65135-21 (Pb-free package)	TW13-D122		

Copyright © 2008, 2009, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROPITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.